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Abstract. Familiar nonlinear and in particular soliton equations arise as zero curvature
conditions forGL(1,R) connections with noncommutative differential calculi. The Burgers
equation is formulated in this way and the Cole–Hopf transformation for it attains the
interpretation of a transformation of the connection to a pure gauge in this mathematical
framework. The KdV, modified KdV equation and the Miura transformation are obtained jointly
in a similar setting and a rather straightforward generalization leads to the KP and a modified
KP equation. Furthermore, a differential calculus associated with the Boussinesq equation is
derived from the KP calculus.

1. Introduction

Soliton equations are known to admit zero curvature formulations (see [1], for example).
In case of the Korteweg–de Vries (KdV), sine-Gordon and sinh-Gordon equations, one can
find SL(2,R)-connection 1-forms (gauge potentials)A such that the condition of vanishing
curvature (or ‘field strength’)

F := dA+ AA = 0 (1)

is equivalent to the respective soliton equation [2]. In this work we show that the Burgers,
KdV, Kadomtsev–Petviashvili (KP) and Boussinesq equation can even be expressed as a
zero curvature condition for aGL(1,R)-connection, but with respect to anoncommutative
differential calculus. By the latter we mean an analogue of the calculus of differential
forms on a manifold, but here functions and 1-forms in general do not commute. As a
consequence, the product of a 1-form with itself need not vanish, in contrast to the case
of the ordinary differential calculus. Because of this fact, one already obtains nontrivial
equations fromF = 0 for a single 1-formA (and not just for a matrix of 1-forms).

The relevant mathematical framework underlying this work is the theory of differential
calculi on commutative algebras. An exposition to it can be found in [3], see also
the references therein. In ‘noncommutative geometry’ an associative and not necessarily
commutative algebra replaces the algebra of (smooth) functions on a manifold. A differential
calculus on the algebra is then regarded as the most basic geometric structure on which
further geometric concepts like connections can be defined. Though in this paper we
still deal with commutative algebras and thus topological spaces, nontrivial commutation
relations are introduced between functions and (generalized) 1-forms and this already catches
much of the flair of general noncommutative geometry.
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Irrespective of the choice of a differential calculus, the expression (1) makes sense. A
gauge transformation with an invertible functionψ is given by

A′ = ψAψ−1 − dψ ψ−1 (2)

and induces the transformationF ′ = ψFψ−1 of the curvature 2-form†.
In section 2 the Burgers equation is obtained via a zero curvature condition with

respect to a simple deformation of the ordinary differential calculus, and the Cole–Hopf
transformation appears as a transformation to a pure gauge. In section 3 we start with two
differential operators which play a role in the theory of the KdV equation. We construct
a differential calculus in which these operators appear as generalized partial derivatives.
From the zero curvature condition for aGL(1,R) connection we then recover the KdV,
modified KdV (mKdV) equation and the Miura transformation. Even more interesting is
the fact that our treatment of the KdV equation naturally leads to the KP equation via
a dimensional continuation of the differential calculus associated with the KdV equation.
This is the subject of section 4. In section 5 we show how the Boussinesq equation and its
associated differential calculus arises via a dimensional reduction of the calculus associated
with the KP equation. section 6 contains some conclusions.

2. The Burgers equation

In the following,A denotes the algebra ofC∞-functions onR2, andt andx are the canonical
coordinate functions onR2. Let �(A) be the differential calculus determined by

[dt, t ] = [dx, t ] = [dt, x] = 0 [dx, x] = η dt (3)

with a constantη. More generally, we have

dt f = f dt dx f = f dx + ηfx dt (4)

for f ∈ A. Herefx denotes the partial derivative with respect tox. For the differential of
a function one obtains

df =
(
ft + η

2
fxx

)
dt + fx dx (5)

and

dx dx = 0 = dt dt dx dt = −dt dx. (6)

This calculus has already been explored in several papers, see [4] in particular. The
differentials dt and dx constitute a basis of the space of 1-forms�1(A) as a left or right
A-module.

A GL(1,R)-connection 1-form can be written as

A = w dt + u dx (7)

with functionsu,w. Using the differential calculus introduced above, the curvature becomes

F =
(
ut + η

2
uxx + ηuux − wx

)
dt dx. (8)

For w = 0 the zero curvature condition takes the form

ut + η

2
uxx + η

2
(u2)x = 0 (9)

† More generally, this holds for anyG-connection whereG is a matrix group in whichψ has values.
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which is the Burgers equation [5, 8]. On the other hand, it is easily verified that the zero
curvature condition implies thatA can be written as a ‘pure gauge’, i.e.

A = θ−1 dθ = θ−1
([
θt + η

2
θxx

]
dt + θx dx

)
(10)

with an invertible functionθ . Comparing the last expression withA = u dx, we obtain

u = θx/θ θt + η

2
θxx = 0. (11)

Here we rediscover the Cole–Hopf transformation [8] which reduces the Burgers equation
to the linear diffusion equation.

3. The KdV equation

A starting point in a modern treatment of the KdV equation is given by the two ‘undressed’
(cf [8]) differential operators

1
(0)
1 := ∂t + ab∂3

x 1
(0)
2 := b∂2

x (12)

with nonvanishing real constantsa and b. Let us try to understand these as generalized
partial derivatives of a (noncommutative) differential calculus onA = C∞(R2). The
associated exterior derivative should then act on a functionf ∈ A as follows,

df = (ft + abfxxx) dt + bfxxξ + fx dx (13)

where ξ is a 1-form which together with dt and dx constitutes a basis of the space of
1-forms as a leftA-module. The operator d has to satisfy the Leibniz rule

d(f h) = (df )h+ f dh (14)

for f, h ∈ A. It leads to

(ft + abfxxx)[h, dt ] + bfxx([h, ξ ] + 3ahx dt)+ fx([h, dx] + 3abhxx dt + 2bhxξ) = 0. (15)

This is only satisfied (for all smooth functionsf, h) if the following commutation relations
between functions and 1-forms hold,

dt f = f dt ξf = f ξ + 3afx dt dx f = f dx + 2bfxξ + 3abfxx dt. (16)

In particular,

[dt, t ] = [dx, t ] = [dt, x] = [ξ, t ] = 0 [dx, x] = 2bξ [ξ, x] = 3a dt. (17)

Furthermore, we have the 2-form relations

dt dt = dt dx + dx dt = ξξ = ξ dt + dt ξ = ξ dx + dx ξ = 0 dξ = −1

b
dx dx. (18)

They are obtained by acting with d on the equations (17) and by commutingx through the
resulting relations using (17).

A connection 1-form can be written as

A = w dt + uξ + v dx (19)

with functionsu, v,w. The curvature ofA is

F = [−b wxx − 2bvwx + ut + abuxxx + 3auux + 3abvuxx ] dt ξ

+[−wx + vt + abvxxx + 3abvvxx + 3auvx ] dt dx + (−u+ bvx + bv2)xξ dx

+
(

−1

b
u+ vx + v2

)
dx dx. (20)
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If dξ 6= 0, the set of 2-forms dt ξ , dt dx, dt dx, ξ dx, dx dx span the space�2(A) of 2-forms
as a left (and right)A-module and will be assumed to be a leftA-module basis†. The zero
curvature condition now becomes

−1

b
u+ vx + v2 = 0 (21)

vt + abvxxx + 3abvvxx + 3auvx − wx = 0 (22)

ut + abuxxx + 3auux − bwxx + bv(3aux − 2w)x = 0 (23)

where the first equation reminds us of the Miura transformation [7, 8]. The third equation
obviously decouples from the others if we choose

wx = 3
2auxx. (24)

However, taking (21) into account, one finds a more general solution of the decoupling
problem, namely

wx = 3
2auxx + cvx (25)

with a constant,c, (23) then becomes

ut − cux + 3auux − 1
2abuxxx = 0 (26)

which for

a = −2 b = 1 c = 0 (27)

is the KdV equation as given in [8], for example. We observe that the parameterc simply
reflects the effect of a special Galilean transformation‡. To summarize, the zero curvature
equation together with the restriction (25) on the connectionA leads to the KdV equation.

With the help of (21), the equation (22) is turned into

vt − cvx − 1
2abvxxx + 3abv2vx = 0 (28)

from which we recover what is known as a mKdV equation [8]. It is surprising that both,
the KdV and the mKdV equation appear jointly in our mathematical framework.

In the above differential calculus it is consistent to impose the additional condition that
the 1-formξ is closed, i.e. dξ = 0. The above formulae remain valid, except that now

dx dx = 0. (29)

The zero curvature condition is then slightly less restrictive. It still leads to (22) and (23),
but (21) is replaced by the weaker equation

1

b
u = vx + v2 + λ (30)

with a functionλ(t). For constantλ we rediscover what is sometimes referred to as the
‘Miura–Gardner transformation’ (see [9], for example).

From the gauge transformation rule (2) we obtain

dψ = ψA− A′ψ (31)

† We still have the freedom to modify the differential calculus at the level of 2-form relations, i.e. to modify
the generalized wedge product by setting certain products of differentials, like dx dx, to zero. The corresponding
terms in (20) then simply drop out. In general it is more natural to proceed without such extra conditions. There
is some motivation, however, to impose on the 1-formξ the condition dξ = 0, see the following section.
‡ For the Galilean transformationx′ = x + ct , t ′ = t we have∂t ′ = ∂t − c∂x , ∂x′ = ∂x .
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whereψ is an invertible (smooth) function. Using (13) and (19) this becomes

ψt + abψxxx = (w − w′)ψ − 3au′ψx − 3abv′ψxx (32)

bψxx = (u− u′)ψ − 2bv′ψx (33)

ψx = (v − v′)ψ. (34)

If dξ = 0, a simple solution of the zero curvature condition and (25) is given byA′ = λξ

with a constantλ. This determines a trivial solution of the KdV equation. The above
equations then take the form

ψt + abψxxx = wψ − 3aλψx (35)

bψxx = (u− λ)ψ (36)

ψx = vψ (37)

and enforce thatA also has vanishing curvature. Restricting the gauge transformation further
in such a way thatA satisfies (25) and thus determines a solution of the KdV equation, and
making use of the last of the above equations, the first equation becomes

ψt + abψxxx =
(

3a

2
ux + f

)
ψ + (c − 3aλ)ψx (38)

where an arbitrary functionf (t) arose from integration of (25). Using the Sturm–Liouville
equation (36), (38) can be written as

ψt =
(a

2
ux + f

)
ψ + (c − au− 2aλ)ψx. (39)

For a = −2, c = 0 and special choices off this is the time-evolution equation for
eigenfunctions of the Schrödinger operator associated with the KdV equation (cf [8], p 101).

4. The KP equation

In the differential calculus introduced in the previous section it is tempting to replace the
1-form ξ by the differential dy of a third coordinate functiony. For functionsf which
do not depend ony we recover the formulae of the previous section. But the extension to
functions of t, x, y requires nontrivial modifications. A consistent differential calculus on
A = C∞(R3) is obtained by supplementing the relations (17) with†

[dt, y] = [dy, y] = 0 [dx, y] = 3a dt. (40)

Then

dt f = f dt dy f = f dy + 3afx dt dx f = f dx + 2bfx dy + 3a(fy + bfxx) dt

(41)

and

df = (ft + 3afxy + abfxxx) dt + (fy + bfxx) dy + fx dx. (42)

The set of 2-form relations (18) is extended by

dt dy + dy dt = dx dy + dy dx = dx dx = 0 (43)

(and modified viaξ = dy, of course). Now dt dx, dt dy, dy dx is a basis of the space of
2-forms as a leftA-module.

† This is really the minimal extension of (17) obtained viaξ 7→ dy. Note that [dx, y] = [dy, x] using the Leibniz
rule and [x, y] = 0.



7284 A Dimakis and F M¨uller-Hoissen

Any 1-form A can be expressed as

A = w dt + u dy + v dx (44)

with functionu, v,w. Regarded as aGL(1,R) connection 1-form, the curvature is

F = dA+ AA = {−wy − bwxx + ut + 3auxy + abuxxx

+3auux − 2bvwx + 3av(uy + buxx)} dt dy

+{−wx + vt + 3avxy + abvxxx + 3auvx + 3av(vy + bvxx)} dt dx

+{−ux + vy + bvxx + 2bvvx} dy dx. (45)

This vanishes iff

ux = vy + b(vx + v2)x (46)

wx = vt + 3avxy + abvxxx + 3auvx + 3av(vy + bvxx) (47)

wy + bwxx = ut + 3auxy + abuxxx + 3auux − v(2bwx − 3a(uy + buxx)). (48)

The next step parallels that of the KdV case treated in the previous section.v is obviously
eliminated from the last equation by setting

wx = 3a

2b
uy + 3a

2
uxx. (49)

Motivated by the KdV example, we shall consider the more general expression

wx = 3a

2b
uy + 3a

2
uxx + cvx (50)

wherec is an arbitrary constant. Taking (46) into account, (48) then reduces to

wy = ut − c(ux − vy)+ 3a

2
uxy − ab

2
uxxx + 3auux. (51)

Now there is an integrability condition. Comparing the results obtained by differentiating
(50) with respect toy and (51) with respect tox, we obtain(

ut − cux − ab

2
uxxx + 3auux

)
x

− 3a

2b
uyy = 0 (52)

which is the KP equation (for the choices (27) of the constantsa, b, c, see [8] for example).
Again, via a Galilean transformation the constantc can be eliminated. Though on the level
of the zero curvature equations our ansatz (50) withc 6= 0 does not really decouple the
variables because of the termcvy , the latter does not enter the integrability condition.

Let us now turn to the equation forv which resulted from the zero curvature condition.
Taking (50) into account, we have

3a

2b
uy = vt − cvx + 3a

2
vxy − ab

2
vxxx − 3abv2

x + 3avvy + 3auvx. (53)

Expressingv as

v = qx (54)

with a functionq, (46) becomes

ux = qxy + b(qxx + q2
x )x (55)

and thus

u = qy + b(qxx + q2
x )+ f (56)
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wheref is a function which does not depend onx, i.e. f (t, y). Now we can eliminateu
from (53) and obtain(

qt − cqx − ab

2
qxxx + abq3

x

)
x

+ 3a(qy + f )qxx − 3a

2b
(qyy + fy) = 0. (57)

Expressingf asf = hy with a functionh(t, y), a field redefinitionq 7→ q − h eliminates
f from the last equation and we get(

qt − cqx − ab

2
qxxx + abq3

x

)
x

+ 3aqyqxx − 3a

2b
qyy = 0. (58)

This equation may be called a ‘modified KP equation’ (mKP). We note that

KP = (∂y + b∂2
x + 2bqx∂x + 2bqxx)mKP. (59)

Hence, given a solutionq of the mKP equation, thenu determined by (56) is a solution of
the KP equation.

5. The Boussinesq equation

Restricting the KP equation (52) to the hypersurfacet = 0 and renamingy as t afterwards,
we arrive at the equation

utt + 2bc

3a
uxx − b(u2)xx + b2

3
uxxxx = 0 (60)

which includes the Boussinesq equation (see [8], for example). The differential calculus
associated with this equation is obtained as a reduction of the calculus which led us to the
KP equation in the last section. First, we have to replace dt by some ‘abstract’ 1-form
ξ . Then, keeping our renamingy 7→ t in mind, the commutation relations defining the
differential calculus of the previous section yield

[dt, t ] = [ξ, t ] = [ξ, x] = 0

[dt, x] = [dx, t ] = 3aξ [dx, x] = 2b dt.
(61)

The differential of a functionf is now given by

df = (3aftx + abfxxx)ξ + (ft + bfxx) dt + fx dx. (62)

Of course, we could have started with the differential calculus determined by these relations
and derived the Boussinesq equation in the same way as we derived the KdV equation in
section 3. In this case we in fact need to add a term proportional tovx in the decoupling
ansatz forwx in order to recover theuxx part of (60). The term was of minor importance
in our previous examples (see (25) and (50)).

6. Conclusions

Crucially underlying this work is the observation that with respect to a noncommutative
differential calculus already the field strength (curvature) of a single connection 1-form (i.e.
aGL(1,R) or aU(1) connection) involves nonlinear terms. With the ordinary calculus of
differential forms on a manifold, a matrix of connection 1-forms is needed to achieve that.
This observation suggested to investigate which well known nonlinear field equations, and
in particular soliton equations, can be formulated as zero curvature conditions for a single
connection 1-form with respect to a suitable noncommutative differential calculus. We
found that the Burgers, KdV, KP and Boussinesq equation indeed admit such a formulation.
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Of most interest is the fact that the differential calculus associated with the KdV equation
has a natural extension and, following the steps which led to the KdV equation, we are led
straight to the KP equation.

Nevertheless, though things fit surprisingly well together, a deeper understanding why
this is so is still lacking. For a certain class of completely integrable models noncommutative
differential calculus has indeed led to a rather complete understanding and a recipe to
construct new integrable models [10, 11]. There is therefore much hope to achieve a
comparable understanding of the structures presented in this work.
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